您现在的位置首页 >> 科研进展
科研进展
科研进展
【EFM】基于傅里叶分析的应力强度因子机器学习模型开发与优化指南
发表时间:2025-08-28 阅读次数:40次

GB/T 7714      

Gautam T, Hochhalter J, Zhe S, et al. Developing robust stress intensity factor models using fourier-based data analysis to guide machine learning method selection and training[J]. Engineering Fracture Mechanics, 2025: 111387.

MLA     

Gautam, Tushar, et al. "Developing robust stress intensity factor models using fourier-based data analysis to guide machine learning method selection and training." Engineering Fracture Mechanics (2025): 111387.

APA     

Gautam, T., Hochhalter, J., Zhe, S., Lindgren, E., & Kirby, R. M. (2025). Developing robust stress intensity factor models using fourier-based data analysis to guide machine learning method selection and training. Engineering Fracture Mechanics, 111387.

背景简介

应力强度因子通常用于表征裂纹驱动力,其值取决于几何结构、载荷、裂纹形状及裂纹尺寸。尽管有限元分析可精确计算SIFs,但其计算代价较高(耗时且依赖商业软件)。相较之下,手册法(代理模型)具有高效优势,但难以适应复杂几何场景。近年来,机器学习(ML)为构建高效代理模型提供了新的途径。本研究首次将深度算子网络(DeepONet)应用于应力强度因子预测,开创性地将应力强度因子计算转化为算子学习问题。与随机森林回归、支持向量机回归及神经网络等机器学习模型相比,DeepONet显著提升了应力强度因子预测精度。本研究还基于傅里叶变换的全数据集分析,旨在建立机器学习方法选择准则:通过分析频率衰减模式匹配数据复杂度与最优机器学习模型,傅里叶变换为模型选择提供指导。该方案在两类裂纹中得到验证——板表面裂纹与板孔角裂纹。研究成果最终形成指导框架:针对特定裂纹类型、载荷条件及固定数据量,可据此选择适宜的机器学习方法。

成果介绍

(1)研究团队建立了完整的机器学习模型技术路线,首先针对两类典型裂纹(平板半椭圆表面裂纹、孔洞四分之一椭圆角裂纹)生成高精度有限元数据集,总计包含超100万应力强度因子数据点;随后对应力强度因子沿裂纹参数角φ的分布进行一维快速傅里叶变换,通过功率谱衰减模式量化数据集复杂度,变换后结果见图1。频谱分析表明表面裂纹数据集呈现陡峭频谱衰减特征,体现低频主导的平滑特性;而孔角裂纹在承压载荷下呈现缓慢频谱衰减,揭示其包含尖锐梯度和局部化高频特征。这种频谱特性与裂纹几何及载荷类型强相关,例如孔角裂纹中承压载荷的复杂度显著高于弯曲与张力载荷。该分析方法为模型选择提供了可量化的理论依据。

 

图1 一维傅里叶变换应用于数据集后的结果,实线表示平均功率谱,阴影线表示区域表示不同空间频率的幅度范围

 

(2)为解决高频复杂数据的建模难题,本研究首次将深度算子网络应用于应力强度因子预测领域。该框架将应力强度因子计算抽象为算子学习问题:分支网络处理几何参数(如裂纹深径比a/c、板厚比a/t),主干网络编码裂纹前沿位置坐标φ,通过张量积运算输出应力强度因子值。在2500种几何×64φ点的大规模训练下,DeepONet展现出显著优势,图2给出了DeepONet与其他机器或深度学习方法在预测裂纹问题时的误差分布。在表面裂纹预测中DeepONet比传统神经网络模型误差降低97%,在孔角张力裂纹预测中比Fawaz-Andersson手册解法误差低95%;百万级数据训练速度比神经网络快28倍;在最高复杂度的孔角承压载荷下,其MRAE>0.01的概率仅为0.3,远低于神经网络的0.65。这些突破使DeepONet成为工业级损伤容限分析的高效工具。

 

图2 所有数据集上的MRAE概率

 

(3)通过对比随机森林回归、支持向量机回归、神经网络和深度算子网络在12种数据规模下的表现,本研究提出频谱衰减-模型匹配原则:对于低频主导数据集(如表面裂纹),推荐采用支持向量机回归(径向基核函数),其平均相对绝对误差比随机森林回归低50%且与神经网络性能相当;面对中高频数据集(如孔角张力裂纹),神经网络或深度算子网络为最优选,其中神经网络在中等数据量下误差比随机森林回归低72%;针对高频陡梯度数据集(如孔角承压裂纹),必须采用深度算子网络,因支持向量机回归无法捕捉高频分量导致误差骤增15倍,总体推荐选项见图3,该框架已成功集成至AFGROW工业软件,为航空发动机盘件损伤容限分析提供高精度解决方案。

 

图3 机器学习模型选择向导

致谢

本研究由美国空军研究实验室(赞助号:FA8650-22-C-5295)和美国联邦航空局(赞助号:692M152140011)赞助。感谢Harry Millwater、Nathan Crosby、Sara Restrepo和Juan Ocampo就这项研究进行的讨论。本文第一作者和通讯作者:Tushar Gautam(University of Utah)

本期小编 章 轩(整理)

董乃健(校对)

  程 航 (审核)

董乃健(发布)